' AD~AQ85 323 GENERAL ELECTRIC CO ARLINGTON VA F/6 972
EVALUATION OF SOFTWARE LIFE CYCLE DATA FROM THE PAVE PAWS PROJE-—ETC(U)
MAR 80 B CURTISs, S B SHEPPARD:» E KRUE F3! 602'77-C-0!.
UNCLASSIFIED RADC -TR-BD-ZS

.
08
mEaz s

g

ADAO85323

MLE COPY

RADC-TR-80-28
Final Technical Report
March 1980

EVALUATION OF SOFTWARE LIFE
CYCLE DATA FROM THE PAVE PAWS

PROJECT

General Electric Company O

BIT1 Curtis OX,-—(\" \

Sylvia B. Sheppard AN \g@

Elizabeth Kruesi z 9 '
W

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER

Air Force Systems Command
Griffiss Air Force Base, New York 1344|

80 69 n28

. This report has been reviewed by the RADC Public Affairs Office (PA) snd
; 2 i{s releasable to the National Technical Information Service (NTIS). At NTIS
‘ it will be releasable to the general public, including foreign nations.

| t
b % RADC-TR-80-28 has been reviewed and is approved for publication.

—AN /-

DONALD F. ROBERTS
Project Engineer

APPROVED: %//54 o/

WENDALL C. BAUMAN, Colonel, USAF
Chigf, Information Sciences Division

FOR THE COMMANDER: ? 4 ﬁ % ,

JOHN P, HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC .
mailing 1ist, or if the addressee is no longer employed by your organizstion, .
Please notify RADC (ISIS), Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list.

Do not return this copy. Retain or destroy.

Ny =

QBT

(g\ (;3"‘;

e oSt

UNCLASSIFIED

SECUR?V Q_ASSIFICATION OF THIS PAGE (When Dala Entered)

/7) REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

. REP UMBE / 2. GOVY ACCESSION NO.

3. RECIPIENT'S CATALOG NUMBER

JRADC TR—8_0—28}

_|Ap - Aogs 3]

4.

TITLE (and Subtitie)

nal Zechnical Repert,
1 Sep 7730 Nov 79)

EVALUATION OF OFTWARE LIFE CYCLE DATA FROM

€. PERFORWING 06 -WEPGRT KUNBER
N/A

|THE PAVE, PANS PROJECT. -

""';% = : /
< /
7Blll Curtls

Elizabeth Kruesi

Sylvia B./%heppard <:277

8. CONTRACT OR GRANT NUMBER(s)

oms]~

F30642-77-

; OBGANIZATION NAME AND ADDRESS
General Electric, Suite 200
1755 Jefferson Davis Hwy

10. PROGRAM ELEMENT PROJECT TASK
AREA & WORK UNIT NUMB

(L 1252‘p103 J/T

Griffiss AFB NY 13441

Arlington VA 22202 Y
11. CONTROLLING OFFICE NAME AND ADDRESS //r ’ T OAT
Rome Air Development Center (ISIS) {)‘ rehsd 980

13. NUMBER OF PAGES /(*
72 /) x,] A j

14, MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)

Same

15. SECURITY CLASS. (0T reporl)

UNCLASSIFIED

15a, ggCIE_';SiIEFICATION/DOWNGRAD!NG
HEDU
N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

Same

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

RADC Project Engineer: Don Roberts (ISIS)

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)

~e

Modern programming practices; Top~down design; Structured coding;
Program support library; Program design language; HIPO charts; Chief
programmer teams; Structured walkthroughs; Software quality assurance;
Software error data; Software management; Software database;

Struc

10 ASST

re

ing

CT (Continue on uvIT side tf

ata were co

ecte

d

ecessary and identily by biock numbet,

over the deve opmenf cycle of the PAVE PAWS

software development project.

This project was designed to be a

technology demonstration of modern programming practices.

The practices

studied on this project included:

(’)Top—down design and implementation.

?)Structured coding and precompilers

LS)Pro ram s Ly, (Cont'd)

FORM)
DD ,an 7 1473 Eoimion oF 1 Nov &3 15 oBSOL TE (e

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

Jo3

Yo 1

-

——

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(Whaen Dats Entered)

(f)Program design language and HIPO charts
($) Chief progranmer teams,
{) Structured walkthroughs,
(-1} Independent test and quality assurance groups ,

The data available for evaluating this project included
personhours, trouble reports, compiler summaries, code progression
and durability charts from the library, management summaries, and
personnel profiles. Only personhours and trouble reports were
collected throughouf‘the\project. The PAVE PAWS project resulted in
211,000 lines of code whieh took 1,133 personmonths of effort to produce
The total effort, productivity, and number of errors associated with
the project were found to be typical of similar sized software develop-
ment efforts when plotted into the RADC database. After some
redefinition of error categories, the relative frequency of the types of
errors experienced on PAVE PAWS was “found to be similar to other
projects in the RADC error database.-¥It was concluded from these data
and our previous study on the LSDB project that modern programming
practices are not miraculous productivity aids. Rather, these practices
represent sound management principles which make software development
more manageable and the prediction of project outcomes more accurate,
Recommendations are also made for methods of collecting software life
cycle data in future studies.

Accecsion For
NTIC @&l N
DL 1B Lo

G- amd

R

o

UNCLASSIFIED

SECURITY CLASSIFICATION OF Ty PAGE(When Dste Entered)

AT et

s oo e Mdadery © vty w il iR et N Ui ik - TN » ‘

et ittt
Ap—e o ————p—

Table of Contents

Title Page

L5 e B i s e bt 2 ettt e e

1. Introduction . .« &+ ¢ ¢ ¢ &+ ¢ o ¢ o o o o o o o o o a o o« o o o
1.1 Purpose of this Research ¢« . ¢ ¢ ¢ ¢ o o . .
1.2 PAVE PAWS System Description « « &« ¢ ¢ ¢« ¢ « &
1.3 Software Development Technology . . « « « « o ¢ « o & o o o«
1.3.1 Program Support Library (PSL) « « « « « .
Top-down programming/segmentation
Structured coding s e s e 0 e
Structured documentation aids o . .
Chief programmer teams . . « + o « o o & » « o &+ o
Structured walkthroughs &
. Independent test and quality assurance functions . . 10
a Collection Techniques. . « . + ¢« « & ¢« & ¢ ¢ o & ¢ & & 10
Manual data collection.. . « « « ¢« ¢« o o o o o o o 11
Trouble reporting system . . « . « ¢« o ¢ ¢« o ¢ « o & 13
Automated data collection . « « « « ¢« ¢ ¢ o + ¢ o & 13
Other sources of data . . + ¢« + &« ¢ o« o ¢ ¢ o o o & 18

W WONNOESWN =

SNouUeswN

1.4 a

SN =

b et ped pet O et et et et ot
« o . .
&SPt OLOLOLWW LW

2. RESULLES: « o« v o v o o o o o o o o s o o o o o s s o o o o o o 20
2.1 Productivity Analysis C e e e s e e s e e e e e e e e e 21
2.1.1 Lines of code . .+ . ¢ o ¢ 4 o o o o o o o o o o o 21

2.1.2 Personhours . ¢ o« ¢ ¢ o o+ o o o o o o s s o o o o o 21
2.1.3 Productivity . ¢ ¢« ¢« ¢« ¢« ¢ 4 s 4 e v e 6 e e e s e 21
2.1.4 Compile summaries « . ¢« & « + ¢« « o+ « < 30

2.2 Error AnalysSes . . o « o+ ¢ ¢ o o o o o s s e 4 s e 4 s e 30
2.2.1 Frequency of Trouble Reports . « . « « « ¢ « ¢« « + & 30
2.2.2 Comparison to other projects « . .+ + « o « . 36
2.2.3 Comparison of error categories + . « . . 36
2.2.4 Error trends over time 4 44 i

3. Conclusions and Recommendations . . ¢« «.¢ ¢ ¢ o & o o s « « « &+ 47 i
3.1 Conclusions . o « « o o o o o 2 & o s o o ¢ o o o e 0 8 . . 47

3.2 Recommendations ¢« ¢« ¢ v & ¢ ¢ o o ¢« o « o s o« o« o o 48
3.2.1 Technical approach to life cycle research 48

3.2.2 Development of a project database 49

4, References . o « o « « o o o o o o o a s o o s s o o o s s o o 61
Acknowledgements , ., . , . . ., . .,t ... 64

Appendix A - Project Summary Forms e e e e e e e e e e e e e 65

ekl o>
” e i n >

114

- e

Table

O 00~ O E W

List of Tables

Title
PAVE PAWS Error Categories . . . « ¢« ¢ ¢ ¢ ¢ v o o o o o o &
Compile Reason Codes . « v « o« v o 4 ¢ o o o o o o o o o o
Variables in the RADC Database « & + ¢ & o o o ¢ « &
Lines of Code by CPCI and CPCG . . . + « « o 4o & o o o o o &
Personhours by Work Category and CPCI « « « &
Reasons for Compile by PSL Level e 4 e e s e v

Frequency of Trouble Reports by Error Category and CPCI . .
Percentage of Trouble Reports by Error Category and CPCI . .
Correlation among Error Profiles by CPCI &
Frequency of Error Categories by Project « . &
Frequency of Error Categories Chosen for Comparisom
Percent of Error Categories Chosen for Comparison
Correlations among Error Profiles by Project
Frequency of Error Categories by Time Period for CPCIZ .« v e
Percentages of Error Categories within Time Periods for CPCI2
Domains of Data . . . e e s s e s s e s e e e s e e e
Frequency of Data Collectlon e v v s e e e e e e e e e

Page

15
16
19
22
23
31
34
35
37
39

42
43
45
46
54
58

List of Figures

Figure Title Page
1 Logical and coded forms of structured control flow 8
2 Data available from the PAVE PAWS project 12
| 3 Trouble Report form « e e s e e e e 14
4 Chronological personhour loadings by CPCI e e e e e e e s 24 {
5 Comparison with other projects for total personmonths by
lines of code v o 0 0. e e e s 25
i 6 Comparison with modern programming projects for total
; personmonths PN . 27
| 7 Comparison with other pro;ects for productivity by 1ines 1
} of code e e e e e e e 28
. 8 Comparison with modern programmlng projects on
productivity . . . e e e e e e e 29
9 Code progression chart for CPCIs 2 and 3 e e e e e e e e 32
i 10 Durability chart for PAVE PAWS project 33
g 11 Comparison of total errors with other projects 38
4 12 A model of individual programmer performance 50
13 A mode of team productivity 51
14 Multiple criteria model of project performance 53

15 Predictive use of software metrics . . . ¢« ¢« ¢« & ¢ ¢ ¢ o & 56

EVALUATION

development projects, in order to assess the impact of modern programming
practices on software productivity, quality and cost. The effort was under-
taken in response to requirements defined in TP0-5, Software Cost Reduction
and subthrust Software Data Collection and Analysis. A goal of that
subthrust is to establish baselines for software data related to software
costs, errors, productivity, quality and maintenance. The baselines will
be useful in identifying factors and characteristics that contribute to the
above factors in either a negative or positive sense. The results of the
data analysis performed on the first effort are documented in an interim
report, RADC-TR-80-6, Volumes I and II, "A Matched Project Evaluation of
Modern Programring Practices" dated February 1980.

i

t

%

g This effort was initiated to analyze data collected during two software
!

i

L

f

This report documents the results of analysis of data coliected during
the development of PAVE PAWS software. A number of modern programming
practices were used on the PAVE PAWS software development. Data pertaining
to program compilations, errors and productivity was analyzed and compared
to similar data collected from other development efforts. The results, in
conjunction with other data previously obtained will further the development
of reliable baselines for gauging future software development efforts.

The report also presents a model for software data collection and
analysis that will significantly aid future research in this area.

DONALD F. ROBERTS
Project Engineer

b

1. INTRODUCTION

1.1 Purpose for This Research

In 1973 Boehm chronicled the tremendous impact of
software on the cost and reliability of advanced information
processing systems. Recently, DeRoze and Nyman (1978)
estimated the yearly cost for software within the Department
of Defense to be as large as three billion dollars. DeRoze
(1977) reported that perhaps 115 major defense systems depend
on software for successful operation. Nevertheless, the
production and maintenance of software for Defense is
frequently inefficient.

In an effort to improve both software quality and the
efficiency of software development and maintenance, a number
of techniques have been developed as alternatives to
conventional programming practices. These modern programming
practices include such techniques as structured coding,
structured design, program support libraries, and chief
programmer teams (W. Myers, 1978; Tausworthe, 1979). The New
York Times project implemented by IBM (Baker, 1972) was
lauded as a successful initial demonstration of these
techniques. Yet, some problems appear to have resulted from
an early release of the system (Yourdon Report, 1976).
Considerable variability has been reported in subsequent
studies sponsored by Rome Air Development Center (RADC) on
the effect of these techniques for various project outcomes
(Belford, Donahoo, & Heard, 1977; Black, 1977; Brown, 1977;
Curtis & Milliman, 1979). Many evaluations have rested
solely on subjective opinions obtained in questionnaires.
There is a critical need for empirical research evaluating
the effects of modern programming practices on software
development projects.

Recently, Curtis and Milliman (1979) evaluated the
effects of modern programming practices using objective
project data collected by RADC. They studied the
effectiveness of the ASTROS plan (Lyons & Hall, 1976)
developed jointly by RADC and the Space and Missile Test
Center (SAMTEC) at Vandenburg Air Force Base. This system
provides guidelines for applying structured design and 4r'
testing, HIPO charts, chief programmer teams, structured L
coding, structured walkthroughs, and a program support '
library to software development projects. In order to test '
the utility of these techniques, two non-real-time

-

;
!
.
{

j
{
!
|
!
j
I
f
j

development projects sponsored by SAMTEC from a system which
provides control and data analysis for missile launches were
chosen for a quasi-experimental comparison. The Launch
Support Data Base (LSDB) was developed under the guidelines
of the ASTROS plan, while the Data Analysis Processor (DAP)
was developed using conventional techniques.

Results indicated that the performance of the LSDB
project was comparable to that of similar-sized software
development projects on numerous criteria. The amount of
code produced per man-month was typical of conventional
development efforts. Nevertheless, the performance of the
LSDB project was superior to that of the DAP project. That
is, the LSDB project team produced higher quality code with
less programming effort and experienced fewer post-
development errors than the DAP project. Thus, Curtis and
Milliman concluded that the benefits of modern programming
practices were often limited by the constraints of
environmental factors such as computer access and turnaround
time. They believed that further evaluative research would
be required before confident testimonials could be given to
the benefits of modern programming techniques. Nevertheless,
the results of their study suggest that future evaluations
will yield positive results if constraints in the development
environment are properly controlled.

In an attempt to gain further evaluative data on the
effectiveness of modern programming practices, RADC
instituted a data collection system on the software
development portion of the PAVE PAWS system development
effort. The software development effort associated with the
PAVE PAWS project was substantially larger than that studied
in the SAMTEC-ASTROS project and offered an opportunity to
study modern programming practices in a multi-team
environment. This report presents the results of analyzing
the PAVE PAWS data.

1.2 PAVE PAWS System Description

Descriptions in this and the following section were
largely based on the final report of the data collection
system filed by Raytheon (1979). PAVE PAWS is a fixed base
Phased Array Warning System utilized for the detection and
tracking of Submarine Launched Ballistic Missiles (SLBM's)
which penetrate the racar coverage. It consists of two
phased array warning sensors located at Otis AFB, MA and
Beale AFB, CA. The primary mission of PAVE PAWS is to
provide the NORAD Cheyenne Mountain Complex (NCMC) with
credible warning of SLBM attacks, including estimation of
launch and impact points and times. As a secondary mission

PAVE PAWS supports the USAF SPACETRACK System with earth
satellite vehicle surveillance, tracking, and data collection
as requested by NCMC.

The system includes six display consoles which are used
for systems operations, monitoring and control, missile
warning operations, SPACETRACK operations, training, and
maintenance control. Over thirty different display formats
are independently selectable at the display consoles in order
to provide complete flexibility in monitoring and
controlling the system. Because PAVE PAWS is an on-1line
system which is intended to be operational at all times, the
data processing system contains redundant hardware
throughout. In the event of a hardware or software fault,
hardware is automatically reconfigured to eliminate the fault
and resume the primary mission within 8 seconds. The data
processor (duplex CDC CYBER 174's) communicates with one of
two MODCOMP mini-~computers which interface directly with the
radar hardware.

In addition to the software to perform the primary and
secondary missions of PAVE PAWS, the system includes a
simulation facility capable of operating concurrently with
the operational software which provides the full range of
mission, threat, communications, and radar stimuli to that

software. Object trajectories, radar cross sections, launch
and impact points, communications messages, radar
environmental effects, and event timing can be simulated
under user specification. The system also records real-time
data pertinent to the performance of the primary and
secondary missions and provides data reduction capabiliti:
for a wide variety of recording formats. '

1.3 Software Development Technology

The PAVE PAWS system specification required that all
software be developed in a modular manner utilizing top-down
structured programming with clear interface specifications to
provide management visibility. Where practical all software
was to be coded in Jovial. The use of the JOVIAL statements
DIRECT/JOVIAL was not permitted. Exceptions in the use of
Jovial were allowed for hiyhly used algorithms, I/O interface
routines, and the operating system/operating system interface
routines which could be coded in a low level language such as
micro code, machine, or assembler for more efficient usage of
the data processing hardware. Fortran was allowed for use in
the Radar Controller.

A number of modern programming practices were used in
the PAVE PAWS software development effort. These practices

included:

® Use of a comprehensive Program Support Library sys
® Top-down design and implementation

® Structured coding, including the use of language
precompilers

® Use of Program Design Language and HIPO charts

@ Chief Programmer Team operations

® Use of structured walkthroughs for reviewing desig
and code

® Development of independent test and quality assurar
groups

These techniques will be described in greater detail below.

1.3.1 Program Support Library (PSL). The PAVE PAWS PS
is a programming tool specifically designed to support and
enforce top-down, structured programming techniques. This
requires a program storage and maintenance capability which
allows considerable program segmentation and a precompiler
which allows the commercial Jovial, Compass, and Iftran
languages to include the necessary structured constructs. T

PSL also accommodates a structured Program Design Language
(PDL).

The PAVE PAWS PSL was designed to support an orderly
progression of software from a development environment
through integration and test into a delivered product throu
use of a multi-level hierarchical configuration control.
Software segments are entered into the library using a user
specified name (up to 40 characters long) at a user specifi
level. Since each level of the library is distinct from
other levels, the same software element may appear in the
library at several different levels. Thus, to completely
identify an item in the library it is necessary to specify
both the name and level. This provides a simple mechanism
for parallelism in development, error correction, and versi
modification. Within the PSL, seven hierarchical library
levels were defined. Starting with the highest level in th
PSL these levels include:

® DEL - software which is in the field

® FRZ - software which has been qualified

® TST -~ software undergoing qualification test
FIX - software corrections for TST level

® INT - software undergoing integration test

Ea & S P SR R
[

e CPT - software undergoing group test

® PRG software under development/unit test.

A program element is ready to migrate to the next
highest PSL control level when it has satisfied a predefined
qualification criteria and is to be placed under more
stringent change control. This migration is effected within
the PSL by a raise level command (XMIT) which moves the
element to the specified level. 1In order to facilitate
changes to segments once they have been raised to higher
levels, the PSL includes a feature called "automatic
drawdown". This feature allows library operations to be
addressed to a specific library level and "drawdown" a copy
of a program element which is under configuration control at
a higher level. Changes can be made to this program element
at the lower level, but it can only migrate back up to its
original level by satisfying the qualifications of each
successively higher level of the PSL. A detailed discussion
of the authorization system required to accomplish change
control is presented in Raytheon (1979).

Code progression and durability charts could be
requested of the PSL and used as management information
tools. The code progression chart is organized as a
CPCG/level matrix which indicates how much effective code
exists (using drawdown as necessary) at each level of the
library. Thus code which exists at the INT level of the
library, also "effectively" exists at the PRG and CPT levels
as well. Since each of the library levels represents a
different testing benchmark, this report allows management to
answer questions like "How much code has been written?", "How
much code has reached functional test?", and "How much code
has been integrated?”.

The code durability report acknowledges the fact that
segments which have already been changed at lower library
levels represent a discount to the amount of code under
configuration control at higher PSL levels in the code
progression report. The accounting mechanism employed in the

durability report ignores segments which have been

"drawndown" for further change at a lower level. The t_
durability report shows management that it is dangerous to .'
consider a segment as having been successfully integrated ' g
when at the INT level of the library if it is simultaneously ‘

undergoing change at the PRG level. To calculate "durable"
lines of code, the PSL counts each unique segment only once.
This count is made at the lowest level of the library where
the segment appears. The value of this report lies in
complementing the progression report in allowing management
to answer questions such as "How stable (durable) is the code
that has been developed?" and "How much effort remains?".

1.3.2 Top-down programming/segmentation. Top-down
programming is based upon a technique of designing and
implementing software by specifying the top level functions
first (G. Myers, 1978; Stevens, Myers, & Constantine, 1974;
Yourdon & Constantine, 1979). The details of each of those
functions and the specification of additional subfunctions
are then developed through successive iterations until the
entire problem is fully developed. Throughout this process
the amount of design or code allowed in a single component is
purposely kept small to make it more manageable. This is
accomplished by treating total functions or subfunctions as
"black box" modules with known input and output
requirements. This modularization (Parnas, 1972) is
reflected in the PSL through program segmentation. A segment
of program code can identify a needed function by using an
INCLUDE statement. This named function can then be dealt with
independently, and it may itself utilize INCLUDE statements
to identify and define even lower level functions. In this
way a program is developed as a set of single page segments
which fit together in a program structure or hierarchy.

The Top-Down aspect of software development is enforced
by identifying each segment placed in the library as either a
top-segment (i.e., the top~level of an independently compiled
program) or as an INCLUDEed segment (one which is simply a
lower-level part of some program). As top-level segments are g
entered into the library and INCLUDE statements are Py
encountered, stubs are generated to act as position holders 3
until actual code is provided. A program stub identifies the
need for code to perform the named function, it reserves the
name for that function, and since it is part of some already
existing program it specifies the implementation language for
that function. The top-down ordering of software development =
is enforced by requiring that INCLUDEed segments cannot be
added into the PSL library unless they are replacing a stub. ;
In addition, since stubs represent unimplemented software
segments, the number of stubs in a program can be used as a
measure of status or progress.

The development of large software systems presents a
substantial challenge in the management of system components.
The allocation of system requirements to individual Computer 3
Program Configuration Items (CPCIs) is an important function

AR At 2o

because from that point forward each CPCI will be managed
with a certain degree of autonomy. Managing these components
includes estimating and planning the effort involved,
allocating resources, assessing and reporting status,
financial management and reporting, and the resolution of
technical problems.

Three principles were observed in defining CPCIs on
PAVE PAWS in order to establish an effective subdivision of
the total software effort:

1) CPCI responsibility should not cross the corporate
boundaries of the prime and subcontractors

2) CPCIs should not cross computer boundaries within
the system hardware

3) Software systems which are executed separately
should be separate CPCIs

Below the CPCI level, software is next broken into
Computer Program Configuration Groups (CPCGs) and Computer
Program Components (CPCs). CPCGs are generally structured
along major functional lines within a CPCI while CPCs
represent individual programs. This structuring of the
software is important because it forms the basis for
allocating system requirements to softwaré, identifying
interface control definitions, subdividing design and
development responsibilities, and making personnel
assigments. In short, a well understood software structure
allows a software project to be effectively managed.

1.3.3 Structured Coding. Structured coding requires the
use of a standard set of program control statements and at
the same time precludes the use of explicit branching
statements. 1In order to provide the standard set of control
statements for Jovial, Compass, Iftran, and PDL, the PSL
includes a pre-compiler which accepts the structured source
statements and converts them into traditional control forms
which are processed by the appropriate compiler. Figure 1
shows both the logical and coded form of each of the PAVE
PAWS standard control constructs. The requirement to provide
a separate statement to end each of the constructs provides a
closure mechanism for the generation of indented listings.

1.3.4 Structured documentation aids. Hierarchical Input-
Process-Output (HIPO) charts are diagramatic representations
of the operations performed on the data by each major unit of
code (Katzen, 1976; Stay, 1974). A HIPO chart is essentially
a block diagram showing the inputs into a functional unit,
the processes performed on that data within the unit, and the

v
n -

Repetition

DO WHILE predicate
function block
ENDDO

DO UNTIL predicate
function block
ENDDO

DO X =1, J, K (index
parameters)
function block

ENDDO

Selection

Figure 1.

IF predicate
function block 1
ELSE

function block 2
ENDIF

CASEENTRY parameter
CASE 1

function block 1
CASE n

function block n
ENDCASE

Logical and coded forms of structured control flow

output from the unit. Typically there is one HIPO per
functional unit, with the processing in the unit being 1
expanded to new HIPOs until the lowest level of detail is !
reached. The hierarchical relationships among the HIPO

charts are displayed in a Visual Table of Contents. Examples

of these documentation aids are presented in Appendix B. &

1.3.5 Chief programmer teams. Chief programmer teams
are organized so that functional responsibiiities such as
data definition, program design, and clerical operations are
assigned to different members (Baker, 1972, Baker & Mills,
1973; Barry & Naughton, 1975). This approach results in
better integration of the team's work, avoiding the isolation
of individual programmers that has often characterized
programming projects. The chief programmer team is made up
of three core members and optional support members who are
programmers. The three core members are:

® Chief programmer - is responsible to the project
manager for developing the system and managing the
programming team. He or she carries technical
responsibility for the project including production
of the critical core of the programming system in
detailed code, direct specification of all other
codes required for system implementation, and review
of the code integration.

® Backup programmer - supports the chief programmer at
a detailed task level so that he or she can assume
the chief programmer's role temporarily or
permanently if required.

® Librarian - assembles, compiles, and link-edits the
programs submitted by project programmers. The
librarian is responsible for maintaining any records
not maintained by the program support library.

1.3.6 Structured walkthroughs - A structured walk-
through is a review of a developer's work (program design,
code, documentation, etc.) by fellow project members invited
by the developer. Not only can these reviews locate errors
earlier 'in the development cycle, but reviewers are exposed
to other design and coding strategies. A typical walk-
through is scheduled for one or two hours. If the
objectives have not been met by the end of the session,
another walkthrough is scheduled.

While a broad range of people often including customers
were invited to attend design walkthroughs, only a few other
programmers were invited to attend code walkthroughs. During
a walkthrough reviewers are requested to comment on the

completeness, accuracy, and general quality of the work
presented. Major concerns are expressed and identified as
areas for potential followup. The developer then gives a
brief tutorial overview of his work. He next walks the
reviewers through his work step-~by-step, simulating the
function under investigation. He attempts to take the
reviewers through the material in enough detail to satisfy
the major concerns expressed earlier in the meeting, although
new concerns may arise.

It is the responsibility of the developer to ensure that
the points of concern raised are successfully resolved and
reviewers are notified of the actions taken. It is important
that walkthrough criticism focus on error detection rather
than fault finding in order to promote a readiness to allow
public analysis of a programmer's work.

1.3.7 Independent test and quality assurance functions.
A test organization separate from the software development
group was created which was responsible for developing all
test documentation and for conducting the tests. Further
there was an organizational separation from the software
development group of the group responsible for developing
the Quality Assurance Program, including the establishment
of project-wide procedures, implementation of a Trouble
Reporting system, and providing regular assessments of status
and forecasts for management consideration and action.

1.4 Data Collection Techniques

The intent of the Data Collection effort was to provide
data which characterized the nature and environment of the
software development activity together with information about
the reasons underlying software changes. The collection of
this data was accomplished in three ways:

1) Manual collection of project and personnel
characteristics.

2) Automatic collection of software change data by the
PAVE PAWS PSL.

3) Automatic recording and summarization of software
change activity as part of a project-wide Trouble
Report/Change Request (TR/CR) system.

Because the bulk of the software design and development had

been completed by the time of contract award, the automatic
collection of data was augmented by a one-time manual
reconstruction of the existing TR/CR database.

10

it

1 o B O

RN L W T

.

. ST N

Data were collected from IBM's software development
effort on CPCI2 (Tactical Software), CPCI3 (Simulation
Software), CPCI4 (Program Support Library), and CPCI5 (Data
Reduction). No attempt has been made to discuss data from
CPCI1 (PAVE PAWS Operating System), CPCI6 (Radar Control
Software), or CPCI7 (Signal Processor Software), since they
were developed by a contractor other than IBM and personhours
and lines of code were not available for these CPCIs.

Six classes of data collected on this project are
available for analysis in evaluating the use of modern
programming practices. These types of data are:

® Personhours

® Trouble Reports

e Compile summaries

® Code progressions

® Personnel profiles

® Project summary forms

Unfortunately, only personhours and troubleé reports seem to
have been collected throughout the development cycle of the
PAVE PAWS project. Figure 2 presents the time periods
covered by each of the six classes of data. Most development
work seems to have been completed by the Final Qualification
Test held in June 1978. The nature of the data available

for each class will be described separately.

1.4.1 Manual data collection. The following types of
data were provided through the completion of forms by project
personnel (the first three summaries appear in Appendix A).
The General Contract/Project Summary provides general
information abou: the size of the project (cost, people,
software, and documentation) together with a high level
technical description of the project. The Management
Methodology Summary identifies management procedures
utilized, the schedule for PDR's and CDR's, and an
enumeration of the Air Force and Military Standards which
apply. The Design and Processor Summary identifies the data
processor configuration, the programming languages used, the
standards followed, and the software technology utilized.
Finally, Chief Programmer Team Profiles characterize the
educational and work experiences of each of the teams on the
PAVE PAWS software development project. Personhours for the
system and for CPCI's 2, 3, 4, and 5 were collected from May

11

N o

o

P Pt

R P — " T — Gass aa o lag. R AR e

A R T VAN, Ay vl N it
pRw

309(oxd sMyd FAVd oYl woxy aTqerTeae ejed °gZ oaInbtg

A s 3 e

LT L

CaS

e

G ‘3&5 e

8L61 LL6T 9L61
It 8 17 A 8 ¢t 14
L | I | Lt 1 1 1 1 1 1
¥ satiewwng 3o8foxd
¥ S917J01d [OUUOSIVG
r Ao ¢ § z siody ! syjxey) A3rriqeang =
J Xt s § z siody ! suorsso1Soad opo) ,
F sinoyuosiag w
— T&<(eja1dmodur)> se{yduo)
I s3zoday eyqnoay

£ 2

A bk

R A i - A

B R e

1976 through June 1978. Personhours were broken into work
categories for each CPCI.

1.4.2 Trouble reporting system. The Trouble Reporting
System provided a report for each problem encountered in code
which had reached the INT level of the PSL from August 1976
to June 1978. The Trouble Reports (TRs) were completed on
standard form (Figure 3). These forms were collected
manually and automated at a later date. The information
includes a description of the problem, an error category, the
CPCI, the CPCG, the priority of the change (emergency,
urgent, or routine), and the level of the hierarchical
library at which the change was made. A brief description of
the error categories is presented in Table 1. The categories
of interest are 1 to 14. Approximately 20% of
the TR's have an "unknown" error code. Although there is a
short description of the problem causing the report to be
written, it would be difficult to accurately assign codes for
the "unknown" group without knowing the software system.

1.4.3 Automated data collection. The Program Support
Library programs were modified to read the compiler 1list
output and determine compiler detected errors. A special
data file was added to the PSL for the purpose of saving
compiler detected errors. The contents of this data file
were used as inputs to a report program on a weekly basis to
produce the PSL error reports which were provided to RADC as
part of the data collection effort. Impact on the PSL users
was minimal, with one additional field required for
compilation (compile reason code). These compile reason
codes are described in Table 2.

The PSL produced compile listings for the period from
January 1978 to November 1978. These included the program
name, date, program edition, level, lines of code, and
reason for the compile. The majority of the compiles (about
98%) occurred from June 1978 to November 1978. This period
of time occurred after the major development effort was
completed. Thus, these compiles are not representative of
the major portion of the project. For example, the purpose
of many of these compiles was to get printed listings of the
code.

Charts of the code progressions for CPCI's 2 and 3 were
produced for the period from April 1977 through June 1978.
These charts present the amount of code that has been
approved at each of four levels within the PSL over time.
The data were used primarily in the management reporting
system.

Durability charts are similar to code progressions

13

szt S

oSG o

N S e
e

wioj jaxoday afqnoa] °¢ aan8ry

ETC 83 u:a TSIV . o 3V | wudd
@ @ @w '
3A08ddvsI0[T] 3A0¥ddV| 3A0¥4dvsI0[]) IN0YddV §..§§U u§.&<D 3A0uddvsial] 3A0¥ddY
|||||||||| or- v (43¥) 31VI1dna(J viva IN310144nsKI(] w3 eoud-MONL] : (/) MOSVIN 1303y
; 60- (9p1s assanay aas) D»@Eﬁ yoyu3
"""""" 8‘
nnnnnnnnnn 0~
""""" 8'
"""""" 8-
Cn il by S R SI
|||||||||| £0-
uuuuu A _|e0-
10-
GO
..._». ﬁ s_m“.E _ @.
YIBIW b3S - 30003 1040 1.200(] :a312vent 31 A INOILATYIS3Q NOILIV 3A1193 2
:3iva) Ae . 13AN
A swaaan || gl @ 00 90 wD .S_Mﬁ?_.z & 3IN91SSY NOLLOVY ﬁ_
BLLINL LI AL L300 I L U A O O B

TTTTT TV VT T TN /0114142530 d31%a)

T : -
v AUV ¥ @ LEL T !_E..MW&-A] w1 U EM«W:BNML

&)

INOLAJINISIO IONVHI/WIWO0Nd

. @) &) @) Ow
TTTT o WAL (S)ow 3D 434 0313343V 150 p.uSA\@.z«sE 1IN 01 Q1N NILSAS
. 11000 1 T THT G ﬂ@.
_ i saaf],, 9343/N01LWNS | 14 g YOLVMISINO u

1S3nD3Y FINVHI/L¥043Y JWNONL WVUD0Ud SHVd 3AVd

L2 R

B S e

AR)

T T

Table 1
PAVE PAWS Error Categories
Code Title Description
0 Unknown
! Computation Error in implementation of equatioms
2 Logic Error in decision logic
3 Data Base Error in data base definition
4 Input/Output Error in processing data items
processing
5 Specified function Missing code
not implemented
6 Specified interface This could apply to hardware, operating system,
not implemented other programs, common data area, etc.
correctly
7 Unspecified function Additional problem definition needed
required
8 Unspecified interface This could apply to hardware, operating system,
not satisfied other programs, common data areas, etc.
9 Memory/throughput Additional optimization required
optimization
10 Design modification/ Change to current design
enhancement
11 Documentation Type C spec change/user manual/PDL
change only
12 Keypunch Mistake in keypunching
13 Deck setup JCL Procedure error
14 Configuration Build uses mismatched code, wrong IGS package
in Build, etc.
15 Open Not yet closed or categorized
16 Reject Duplicate of another TR
17 Reject Insufficient data to support TR
18 Reject Non-problem
19 Reject Other reason

15

Table 2

Compile Reason Codes i 3

Label Title Description
INITIAL Initial Program Used until the program compiles without
Compile compiler detected error
KEY Keypunch Error Used when keypunching errors are being
corrected
SETUP Deck Setup Error Used when the compile is to correct
a deck setup error such as using the
wrong COMPOOL
CoMP Computational Error Used when correcting computational
errors such as the wrong sign or wrong
trigonometric function
LOGICAL Logic Error Used when correcting logic errors such
as NE instead of EQ
DATA Data Base Error Used when correcting data base errors
such as tables not correctly initialized
I0 1/0 Error Used to correct errors in using the 1/0
facilities such as changing reads to
puts or adding necessary WAIT state-
ments
SFNI Specified Function Used to insert functions whose imple-
Not Implemented mentation has been deliberately delayed
SINI Specified Interface Used to insert interface code which
Not Implemented has been deliberately deferred
FUNCHG Unspecified Function Used to implement new or changed
functions
INTCHG Unspecified Interface Used to implement new or changed
interfaces
MEMOPT Memory Optimization Used to compile changes made to improve
core memory utilization
CPUOPT CPU Time Used to compile changes made to improve
Optimization CPU utilization
LOGOPT Logic Simplification Used to compile changes made to the
program to make the logic easier to
understand
COMMENT Comment Used when the compile is to verify

the legality of comments

S e e
- e

i

b2
‘ 4
Table 2. (Cont'd) i
P -
Abbreviation Title Description
L4
LIST) Extra Listing Used when the compile is to obtain
Required an extra listing or an additional
listing feature e.g., generated code .
VERIFY Object Module Used when the purpose of the compile E
Verification is to guarantee that the object and
source code match, This code should
also be used when a common include
has been changed in another program
COMPILER Compiler Error Used when investigating or correcting
internal computer errors
PPOS Operating System Used when correcting operating system
Error errors
Used when correcting PSL internal

PSL

PSL Internal
Errors

errors

except that they present the highest level of the PSL at
which a program is resident without having been drawn down
for additional changes at a lower level. Thus, if a prograr
has been approved at the TST level, but it has been drawn
down to the PRG level for further changes, the durability
chart will represent this program at the PRG level. Similar
to code progressions these charts present data collected
between April 1977 and June 1978.

1.4.4 Other sources of data. Unfortunately the PAVE
PAWS source code was unavailable due to security reasons.
However, three additional sources of information regarding

the development of this code are available. These sources
include the Green Sheets which describe the standards
observed on the project. They provided a means of

communication among project personnel on coding practices.
The Configuration Management Plan described the use of the
PSL in controlling the development of the code. Finally the
IBM Software Quality Assurance Plan described the methods
used to manage code quality.

RADC has compiled several databases of information
relevant to software development against which the
performance of the PAVE PAWS project can be assessed. RADC
has collected development data over a large number of
systems, including military and commercial software projects
(Duvall, 1978; Nelson, 1978). These data were collected in
an attempt to establish baselines and parameters typical of
the software development process. Some cf the variables
against which the PAVE PAWS data can be compared are listed
in Table 3. RADC has also sponsored a number of studies
which have provided detailed categorizations of error types
(Baker, 1977; Curtis & Milliman, 1979; Fries, 1977; Rye et
al., 1977; Thayer et al., 1976; Williams et al., 1977)
against which the PAVE PAWS error categories can be compared

18

Table 3

Variables in the RADC Database

Variable Definition

S e e e e — < —n !
’

Program Size The total number of lines of source code in the
delivered product. This count includes declaratioms,
internal program data, and comment lines. It does
not include throwaway or external data.

Project Effort The number of man-months required to produce the
software product, including management, design,
test, and documentation.

Project duration The number of months elapsed during the development
phase minus dead time such as work stoppages.

Errors The number of formally recorded software problem
reports for which a correction was made during the
period covered by the project. This does not include
errors from the development portion of the project,
but rather from testing through integration.

Derived parameters Ratios obtained from other variables:

a. Productivity = Size/Effort

b. Average Number of Personnel = Effort/Duration

¢. Error Rate = Errors/Size

19

2. RESULTS

The analysis of the data from the PAVE PAWS project will
be presented in two sections. The first section will relate
to productivity, while the second section will present
analyses of the PAVE PAWS error data. Analyses in the first
section will include:

® descriptive data on lines of code and personhours

° productivit& comparisons between PAVE PAWS and other
projects

e descriptive data from the PSL database

Analyses in the section on error data will include:
® descriptive data on the PAVE PAWS error categories
® comparisons to error data from other projects

A major goal of this project was to use the data
available to determine the effectiveness of various modern
programming practices separately and in combination.
Unfortunately such analyses are not possible from the PAVE
PAWS data. 1In order to determine the effectivness of
separate practices, data are required which compare project
outcomes that are attributable to 1) the use versus nonuse
(or degree of use) of a particular practice, 2) the use of a
practice singularly or in combination with sets of other
practices, and 3) environmental limitations on the practices l
employed. The first two types of data were not available
since all project members were expected to observe all _
programming practices and standards throughout development. 1
Differences might be detected if there were an indication of
which team developed which sections of code and how these
teams may have differed in their adherence to practices.

However, no information was available which allowed this
determination. The third type of data is available only
indirectly by comparing the PAVE PAWS data to the RADC
software database. Yet, without additional data on the
factors which affected performance in these other projects
this type of analysis is only approximate. Thus, assessments
of the effectiveness of individual programming practices must
rest on subjective reports provided by the development
personnel. Comparisons to other projects must also be viewed
warily since Curtis and Milliman ?1979) demonstrated that the
benefits of programming practices must be interpreted within

20

———

e e e ———

the constraints placed on their effectiveness by factors in
the development environment. Nevertheless, the data
presented in this report will be of heuristic interest even
though they are insufficient for determining the measurable
benefits of modern programming practices.

2.1 Productivity Analyses

2.1.1 Lines of code. As is evident in Table 4, the
four CPCIs developed by IBM on the PAVE PAWS project
consisted of approximately 211,000 lines of code. Thus, the
final system is substantially larger than the original
estimated 135,000 card images reported by project personnel
in the General Contract/Project Summary (Appendix A). It is
possible, however, that the number of instructions originally
estimated did not include such lines as comments which would
be included in counting the total lines of code.

It is evident from Table 4 that CPCI2 is composed
of eight CPCGs some of which are as large as CPCIs
3, 4, and 5. Unfortunately, lines of code for the CPCGs in
CPCIs 3, 4, and 5 were not available.

2.1.2 Personhours. The personhours expended in
developing CPCIs 2 through 5 are presented in Table 5. The
169,888 hours for the total project represents 1133 person-
months of effort, using a standard of 150 hours per person-
month. This figure is quite close to the 1089 personmonths
estimated for the project (General Contract/Project Summary,
Appendix A). In preparing this table it was assumed that the
24,415 hours attributed to system level development of the
four CPCIs was involved in preparing some support software
(BLD, COMP, JOV, PROC, STP, and SYST) which was not defined
as part of the four CPCIs. These hours were listed under
code and integrate, but this assumption may be in error. The
relative hours devoted to the development of each CPCI were
consistent with the size of the code comprising the CPCI.
Figure 4 presents the chronological personpower loadings by
month and CPCI throughout the PAVE PAWS project.

2.1.3 Productivity comparisons with other projects.
Nelson (1978) has produced a number of regression plots of
delivered source lines of code against various project
outcomes for projects in the RADC database. These scatter-
plots allow a comparison of outcomes among projects while
controlling for project size. Figure 5 presents the scatter-
plot for total personmonths of effort versus delivered source
lines of code. Datapoints for the total PAVE PAWS project
and each CPCI have been separately plotted into the figure.
It is evident that the number of personmonths required to

T2 ST Y T
. -

Table 4

Lines of Code by CPCI and CPCG

Lines of Code

' CPCI Title CPCG CPCIL
, 2 Tactical Software 139,000
i RTM - Real Time Monitor 13,200
, MCTL - Mission Control 5,200
SCM - Satellite Catalogue Manager 10,300
RAM - Radar Manager 12,900
TRCK ~ Track 16,100
DISP -~ Displays 45,900
COMM -~ Communications 8,700
TGDB -~ TIMEX Global Database 26,700
3 Simulation Software 29,000
DPCS ~ Data Processing Database

RTSM - Real Time Simulation
SGDB -~ SIMEX Global Database
TSG - Target Scenario Generation

4 Support Software 16,000
PSL -~ Program Support Library
LPC - Precompiler E
MREP - PSL Management Reports

e = 430 L

5 Data Reduction 27,000 ;
DTRD ~ Data Reduction i
PRNT - Print 4
STRP ~ Strip .
SORT - Sort
LRID - Logical Record ID |

Total 211,000

‘.;MW«W’
~ mema

i sl

Table 5

Personhours by Work Category and CPCI

CPC1
Work Category System 2 3 4 5 Total
]
E System Engineering 9507 3393 1040 0 0 13940
: Production Specification 4657 1555 0 0 0 6212
Detail Design 0 9662 2889% 2097*% 3609*% 18257
Code and Integrate 24415 55004 9052 5329 7872 101672
User Manual 0 0 289 0 0 289
Testing 3816 19836 2326 1594 1946 29518
Total Personhours 42395 89450 15596 9020 13427 169888
Total Personmonths 283 596 104 60 90 1133

*
Includes personhours devoted to production specification

T

23

Y) @,
SR -

10dD &q sburpeor anoyuosiod TeoTHOTOUCIYD

INAWJOTIASA OINI SHINOW
8L61

LL6t

----- ‘u.o-.-
Il.o....
(l e,

‘p aanbry

...
Se- o..l.’l!.l..-.’
.0...0... J

o™ e ™
AL ’
..\u.\\. oot gt eent

.,
o,
LN

SI0d) ===
QHU&U wessevene.
ﬂHUmU 1000000
71040 =t

WALSAS =™

—0001

——0009

24

[Rr]

oy s Ao

AT TS PORK

apoo 30 sautl Aq syjuouuosasad Tezol 103 s109(oxd 19yzo y3TM uvostaedwo) g 2InbTg

d4a00 40 SEANIT ADANOS GIVIAITAA

Wi 1) 0ot ot b1 0ot ot
o A hPIDDI.I j A ~PEE A LI’_F:E i r - _bnhbh A A A _-P-\F- L A ;.El-r-\h\r\— \— —u
X
|
i
F- 1
F— o1 m
R
g g
o ™
E ot O
g.m
2
104D S
F~ w¢
30afaad 1eI0] s
mll-
.
[
o
5
o

25

. L ARG e
L et W M g

complete PAVE PAWS was typical of the time required to

complete other projects of this size. That is, the datapoint

for the total project fell next to the regression line, an

indicator of the anticipated value for projects of similar

: size. Similar results were observed for each CPCI when

h plotted separately. The datapoint for the LSDB project
(Curtis & Milliman, 1979), a modern progrmaming effort ¥

studied in this research project, also fell on the regression i

line when it was plotted into the figure. Thus, it does not . *

appear from these data that modern programming practices lead

to a reduced level of effort (personmonths) in developing

k software. -

Datapoints for the PAV. PAWS and LSDB project were
plotted into a scatterplot (Figure 6) similar to that in
Figure 5 which contained only data from projects guided by
modern progrmaming practices. Figure 6 indicates that the
PAVE PAWS and LSDB projects were typical of the level of
effort required in modern programming projects.

Data from the PAVE PAWS project were also compared
against other ‘'projects in the RADC database on a productivity
measure. This measure was developed by dividing the total
delivered lines of code by the personmonths required to
produce them. This is a gross measure of productivity and
there are problems with its interpretation {(Jones, 1978).
Nevertheless, it is a measure which is often readily i
available for comparison among projects.

of 186 lines of delivered source code per personmonth. For
each CPCI the lines per personmonth were as follows: CPCI2-
233, CPC13-279, CPCI4-267, and CPCI5-300. The productivity
of the total PAVE PAWS project is somewhat lower than that
for each CPCI. This is probably due to the work categorized ‘
earlier as system level support software which involved .
development but was not delivered as part of CPCIs 2 through
5. Thus, these lines of code cannot contribute to the PAVE
PAWS productivity figures. These productivity values are
plotted into the RADC data in Figure 7, along with an
indication of the productivity of the LSDB project. The
datapoints for the PAVE PAWS project and its CPCIs fall near
the regression line indicating that the level of productivity
for this project was typical of that observed on software
development projects of similar size. The same conclusion
can be drawn for the LSDB project. The data for the PAVE
PAWS and LSDB projects were also plotted into a graph
containing productivity data for modern programming projects
(Figure 8). These values fell close to the average for
modern programming projects. Thus, average productivity ‘
seems to have been achieved on both the PAVE PAWS and LSDB :

Personnel on the PAVE PAWS project produced an average ?

P e et e R
) - o

i, - ot

A

. . IT. AR

L Sy

R EE P

P

Rl v i ¢

RE.

LIPS,

N " ... » P i T
syjuouuosIad Tejo3l 103 s309[pad buTumrexrbord uxspow YjTm uostredwoy °g aanbtd
FQ00 A0 SIANIT IDANOS JIVIAITIA
.._= - 00¢] b1] o
b 5 AAE A % 8 4 ' —.PPPP-L A A —---\.L- 1 AL L L L 3 AMA R A4) A L4443 A A Il

X i |] | -
= I
— ot =
- E
3
E o 8

oot m

2
F H
F 7
== 31
:
3
— w1
-
E

-

27

Loy o ik Sl Al

0,51, X R € e

v o

8pod jo saurr Aq A3tarzonpoad o3 s3osfoad asyazo Y3atma uostredwo) -/ aanbrg

4000 J0 SANIT ADWNOS THYTAITAA

w01 w ot 01 » oot o1
XL A —DI- i AL 'y -.-- Al A —D-I- A b A A _-D-I AL A -.-.b d, A —-I- I 1 '] . -
+ [
I
€aST . F B
N o g
b
+ + a
] s, - 3
oafoad 1eio vof o i
et el AR VU + S
.N + + o
N Ay by . e
o v v e T E A~
tho + ¥ o K
W Ip T e MP L &
I R @
..Tv*.v #}A—. + F 4 o ~
LGV IR]
+ e i L A [m
o} A A + 4 : ., a8
N E_
Wt M
+
PR |
+ [(7
8 o’
+ F
F~
-

T D" = L ST S -

28

F JrXwmEvR e de -

S B

e

o i

S

i<t ed

Aatataonpoad uo sao9foxd putumeapoxd urspouwr Yy3Ta uosTIedWoD °8 aanbt g

9400 d0 SANIT ADANOS qIYaIAITAd

%ot ut 00§ 1] n 00t ot
L A _-—-’ 3 i i —-—l- A A 1 —DE- 3 L 'l —---L i —-h- - i 1 ——-n-b 'y A i —
X t
[g
r ®
C o
-
G10dD o 5
=
¢I0dD T m
%1340]
€100 v, -2
s9foad Te30 4 [
309f 1 L / + 1\, 4qs1 g —~
s [
0 — + — o1 3
ta
F t s - 2
¥ s ¥ + ¥ ‘ o
+ + P - “
+ &) @
o 4 + i
I + F— % M
+ =2
+ + Z)
. !
:
F— w1
A

29

projects.

2.1.4 Compile summaries. From January through November
1978, 1756 compiles were performed through the Program
Support Library (Table 6). The vast majority of these
compiles were recorded after June 1978. However, as can be
seen in the code progression chart for CPCIs 2 and 3
presented in Figure 9, the development effort had been
largely completed by June and Final Qualification Tests had
been performed. The same progression is true for CPCIs 4 and
5. The compiles captured by the PSL primarily involve
cleaning up the code prior to delivery to the customer. The
code durability chart for the total project presented in
Figure 10 indicates that while 100% of the code had risen to
the FIX level by June, some code had been drawn down to
lower levels (e.g., PRG) for further work. It is unclear
that the frequency of compiles by reason in Table 6 would
hold true for earlier phases of the project. For instance, a
larger relative frequency of INITIAL compiles would be
anticipated during earlier phases. Of the compiles recorded,
69% were performed to correct algorithmic errors in the code
(i.e., FUNCHG, COMPUTA, LOGIC, and SFNI), while only 2%
involved INITIAL entries of code. Since most development runs
were not recorded in the compiler summary file, there is
little information which can be gleaned from this potentially
valuable source of data for use in evaluating the
effectiveness of modern programming practices on the PAVE
PAWS project. However, the first four compile reasons
correspond to frequent error types, and this relationship
will be discussed in Section 2.2.4.

2.2 Error Analyses

2.2.1 Frequency of Trouble Reports. The frequency of
Trouble Reports by error category for each CPCI and the total
project are presented in Table 7. There were 2099 Trouble
Reports (TRs) filed for CPCIs 2 through 5 which had an
interpretable error category. TRs which listed an error code
corresponding to "unknown" or "reject" categories were not
included in these analyses. CPCI2 accounted for 66% of the
delivered code, and yet 86% of the TRs were reported against
CPCI2. Thus, while the number of errors per thousand lines of
code was only 2.93 for CPCI3, 5.25 for CPCI4, 4.59 for CPCIS,
the rate for CPCI2 was 12.99, bringing the figure for the
total project to 9.95.

The percent of errors falling in each category for each
CPCI and the total project are presented in Table 8. The
most frequent category was logic errors (43%), especially in
CPCI2. Other frequently occurring errors were input/output

30

i oy i (rbon GRS - i b bachs i e
Lo Tt o i R e ,:.qw-mbwm""’ e oo A -l 3

3

!

r Table 6

Reasons for Compile by PSL Level

!
p PSL Level

Compile Reason PRG CPT INT FIX TST Total

FUNCHG 358 48 81 16 503

COMPUTA 321 12 1 334

LOGIC 170 30 3 9 212

SFNI 159 6 165

0s 117 117

VERIFY 83 3 3 89

INTCHG 71 12 83

LISTING 46 4 4 15 69

DATA 57 57

KEY 31 3 34

SETUP 24 9 33

INITIAL 29 2 31

UNKNOWN 10 10

1/0 2 5 7

SINI 6 6

COMPILE 4 4

CPUOPT 1 1

PSL 1 1 |
g

Total 1490 115 92 56 3 1756 ’

= ey

31

A

8L61 LL6T
Z/o s/S Ly g/ g/t 99U Y/ v/ i/et /e S/8 T/ £/9 9/ Tz/v
0
11/
0S
SL
= 001

U - S

32

et

e 48T

Gl Nl et A R b, o

b5,

.y,

w;.lrl»
jo9foad sMyd dav¥d I10F 3AeYD KAar1tgeang Q1 °anbrg
8L61 “LL6T
Z/9 S/s Ly </s €/t 9t /e w/1n L/or /6 S/8 /L £/9 9/5 e/

N 0

T ——— S)
St

4\/\/\/\/ o

INO¥3d

SL

001

T e e _
ettt il e R 4

Frequency of Trouble Reports by Error Category and CPCI

il i, i

Table 7

B on gL AR L D i

P PR i R Ay Y

CPCI
Error Category 2 3 4 5 Total

Computation 64 5 0 2 71 ‘
Logic 826 23 31 31 911 !
I/0 processing 228 5 43 278

Database ' 21 3 4 28

Unimplemented function 207 4 18 229

Unimplemented interface 97 6 108

Unspecified function required 27 2 19 48

Unspecified interface unsatisfied 26 2 28]
Optimization needed 51 2 3 56) |
Redesign 182 28 27 19 256 i
Cocumentation change 38 3 0) 41 ;
Keypunch 0 1 0 10 ;
Deck Setup 2 0 2 12 L
Configuration 22 0 0 1 23 ;
Total 1806 85 84 124 2099 '

34

Table 8

Percentage of Trouble Reports by Error Category and CPCI

-
i CPC1
Error Category 2 3 4 5 Total
. 1
Computation 4 6 0 2 3
Logic 46 27 37 25 44
1/0 processing 13 6 2 35 13
Database 1 4 0 3 1
Unimplemented function 11 5 0 14 11
Unimplemented interface 5 7 1
Unspecified function required 1 2 23 2
Unspecified interface satisfied 1 2 0
Optimization needed 3 2 4 Q 3
Redesign 10 33 32 15 12
Documentation change 2 4 0 0 2
Keypunch 1 0 1 0 1
1 Deck setup 1 2 0 2 1
1 Configuration 1 0 0 1 1

35

;
|
!

processing (13%), redesign (12%), and unimplemented function
(11%). Table 9 presents the correlations between error
profiles among the four CPCIs in order to determine their
relatedness. Moderate correlations were observed among the
CPCI profiles with an average interprofile correlation of
0.61. There was moderate consistency among the types of
errors observed in developing the different CPCIs, but there
were categories such as input/output processing and
unimplemented functions in which the percentage of errors
varied widely among CPCIs. In part, these differences may be
related to differences in the nature of the functions being
implemented in the CPCIs. For example, more I/0 errors would
be expected in CPCIs which must perform large amounts of
input or output processing of data. CPCI5 primarily
performed data reduction and had the largest percentage of
I/0 processing errors.

2.2.2 Comparison to other projects. In Figure 11 the
PAVE PAWS error counts are plotted into the RADC database
both for the total project and for each CPCI. The datapoints
all fell near the regression line, suggesting that the PAVE
PAWS project experienced a typical incidence of formally
reported errors for projects of similar size. However, the
point at which formal trouble reports begin to be generated
may differ among projects. Nelson (1978) suggests that for
most of the projects in this database such reporting does not
begin until after unit testing is completed. Such a starting
point was employed on PAVE PAWS and the proiect seems to have
experienced an average number of errors for its size. When
the number of errors in LSDB was plotted into this figure, it
fell almost one standard error of estimate above the expected
number of errors. However, it is difficult to accurately
compare total errors across projects since they do not all
begin formal trouble reporting procedures at the same point
in project development.

2.2.3 Comparison of error categories. The error
categories from the PAVE PAWS project could be compared
against error categories from several recent RADC studies in
which data were collected on error types. The projects
covered in these studies include four projects from TRW
(Thayer et al., 1976), and single projects from Raytheon
(Williams et al., 1977), IBM (Baker, 1977), Boeing (Fries,
1977), Draper Labs (Rye et al., 1977), and Federal Electric
(LSDB, Curtis & Milliman, 1979). Most of these studies
employed an error classification scheme developed by Thayer
et al. at TRW. In a few instances additional categories were
added, and in two cases (TRW5 and LSDB) a reduced scheme was
used which combined several categories (e.g., interface
categories). The actual frequency of these errors by category
is presented in Table 10.

36

-_—. .

-c"

. r - 2
anggnaid - e i r e T LR Py

e e RS

Table 9

Correlation among Error Profiles by CPCI

CPCI 2 3 4 5
2 (.62)
3 L69%%x (.69)
4 . 65%* .83%% (,63)
5 .52% . 54% .41 (.49)

Note: Correlations in parentheses on the diagonal
represent the average correlation for the
CPCI's error profile with that of other
CPCls,

*p <« .05
#%p < .01

e, P

—

37

- et ae mrowia - " & 3 P PP R IRy A P - . x4 ,.,.5.%.,2 Babintnnny . pue o iy w‘ T

—— — — - . N - p .
- -

m s309foad asyzo y3z1m szoazs Te303 O uostaedwoy -1t aanbtg

d4d00 40 SINIT ADWNOS AIYIAITACA
B [0ol b] "
‘ —tlb A4 U S A — A i 8 a_.a L L 5 _ 2.4 4 3 A A A —
3 t
\ !
— o1
; ”
:
F— oot
. 5 -3
3
3 E B)
“ F—~ m
- (o]
]
- n
. 4as1 E_ ot
n.h o + ' - ﬂ
3oafoad 1e30L m
1040
sn 4 F~ w0t

-— T

*393foad 21eyl uo Bujlaiodaa
103 K108a2380 3TBufs B 0jU} pouUTquOD I1IM 83F10823EeD JO IIqUNU B IJBY] IJLITPUT SIN|IBIQ UT sI3qunu
aTTya *3o3foad jey)l 10J uMOPREaIq 10113 IY3J UF PapNIoUF jou sBm £103338D 3yl I3IvOJPUT 8aoeds Juelg :330N

80S 61LT1 v161 769S $91¢ 1921 6€S 6E%% 86%1 6607 1e30}

e

: [XA ¥A QHGUENPOHQBﬁ a8noy-u]
H LSY uojIvIUSENI0P sIusdwWIIFnbay
i e 99 a1empiey
.) 1t Go.nuﬂu.vu.—.nvﬂn—n Qu—.—vluuﬂq-vﬂu—
E 0 61 z01 € 0 6Y S suoy3sand
: LA 0 8S1 92 St 0 811 98 44 103v19dg
88 99 o€ 9¢e L 0 8.1 08 P3TITIUaPTUN
0 LS LAa! 43 o1 0 Ly ot e aoueTdwod sjuswaaynbay
§ 0 %4 l 96L ¢l 4 ¥4 961 TLT 1% uogIejuUdMNIOQ
4 08¢ 8y1 0zs8 6€ 0 08 174 . Jula1anday
— 158 9 n SYy _M.ow_ z1 0S 9S ﬂm. UOTIFUTIOP J00JRO0D /> TqBFI8A [BqQOTD
rWL GSE L) (12 (% 291 . 6 o 111 |y, aseqelep 32891g
08L 191 881 v9L It o 0 AT safuey> paisanbaa iasq
S 6L A | 9.1 (4 761 12 o1 e @dej1aju} Iseqeleq
~ 4 2 62 o1 »E ¥eEE w11 » aJvjI23uy 128 o
0 S S) SL 6 6 1 9¢1 aJe3j3ajug Bupssasoad adej
H €89 € 8¢ Ly * 0 8¢ S « 22e3I133UT WAIsLs /aurinoy
T 09¢ 14 %A 91 o €€ osz 69 VY, 328313]UT IUTINO1/AUFInoy
MMu i A 61 81 m O €8 91 (%7 uoyavangyjuo)
— 41 8 91] ey O 4 1 aaemjjos jioddns g wajzsfs Bugivaadg
Y 173 zLe 94¢ 60Y 60% 011 €19 %91 Suripuey ®leq
62 L8T 8¢ ysY 12 12 9¢ 61L 9S1 8L Inding/anduj
86 L1ee s€9 £66 [4:1% 8¢ O%1 (€6 95T 116 o380
g S 1%S 601 0Ll SI1 19 § G2 €SE 91 1L euorIvIndwo)
3 gas1 a1adewaq SBuysog RA1 uoayIfey S L) € r4 SMVd £108238) 10113
b ML aAVd

3o9load Aq sotaobajzen a0xxg jo Aousnbaxg

0T ®19eL

e e ———— A A an o

s o are " oy s s a)

et

Unfortunately the PAVE PAWS error classification scheme
was quite different from that used by other projects in the
RADC database. The computation, logic, I/0, configuration,
and documentation categories were roughly equivalent to the
categories with similar names used in the other projects.
However, in order to make comparisons possible it was
necessary to reclassify several other categories, knowing
that some inaccuracy would doubtless result from such
redefinition. Some error categories from the other studies
were also combined to facilitate comparisons. The five
interface categories in other projects and the two interface
categories in the PAVE PAWS project (Table 1, Codes 6 & 8)
were collapsed into a common interface category. The preset
database and global variable categories in other projects
were combined and compared against the database category in
PAVE PAWS. Unimplemented and unspecified functions on PAVE
PAWS were compared to requirements compliance problems on
other projects. Redesign and optimization categories on PAVE
PAWS were compared to user requested changes on other
projects although these categories may have included problems
which should have been compared to requirements compliance
errors. Keypunch and deck setup errors on PAVE PAWS were
compared to operator errors on other projects. These changes
underlie the reclassification of PAVE PAWS errors appearing
in Table 10.

In order to compare error frequencies across projects, a
subset of the error categories was selected for analysis.
These categories are listed in Table 11. The user requested
changes category was not included because not all projects
seemed to include these among trouble reports while other
categories were dropped which did not correspond to the
reclassified PAVE PAWS error scheme. For purposes of
comparison only 1787 of the 2099 PAVE PAWS trouble reports
were studied. Because there were too many discrepancies in
their categorization scheme, TRW5 and LSDB were not included
in these reduced comparisons. Table 11 presents the
frequences of these errors across projects while Table 12
presents the percent associated with their relative frequency
of occurrence. There were some obvious areas of congruence
such as the typically low percent of configuration errors and
high percentage of logic errors. However, percentages of
other categories varied in no clear pattern. Some of this
variance may be due to differences in the way project
personnel chose to classify certain types of problems.

To better compare error categories across projects,
Table 13 presents correlations among the error profiles of
the projects. The correlations observed were moderately high
with an average correlation among error profiles of 0.70.

23 NN o e g g

1472 20¢1 £82¢ 858 81¢ S1S¢ vl L8L1 1830}
0 851 97 St 0 811 98 A4 103e33dQ
LS 91 (4% 01] LY o1 Lz 3oueydwo> sjuswaaynbay
x4 L 96L S1 €2 961 T 187 uoFIBIU3WNIOQ
9021 €t (44} 107 12 0zYy 191 :14 aseqeleq
%951 8L 1L¢ SL 16 99 661 9¢1 3orjaaU]
zzn 1 61 81 0 €8 91 €T uorieanidyjuo)
182 82 ysYy 12 9€ 61L 9s1 8.2 ndang/Induy
0nee G€9 £66 8¢ oY1 LE6 194 116 51801
%8 601 0L STT L X1% 291 {2 Teuoyieindmoy
aadeaq Suyooy N4l uoayifey 4 € 4 SMVd £10893%) 10113
e qAvVd

= S S

uostredwo) 103 ussoyd setxobeje) I0axm jo Aousnbaai

1T @19%L

41

e o S N .J.,Jﬁ“y K ﬁiq =

0 A 1 [4 0 € L 1 103eaadg
1 It 1 1 0 1 1 S1 aoueyydwoo sjuawdapnbay
6 Z V24 < L 9 71 4 uojleiuaumodoq o~
91 6 €1 k£ L (41 %1 4 aseqeleq ¥
02 9 11 6 62 81 91 8 aveJIIIU]
91 1 1 [4 0 (4 1 1 uofivandyjuo)
Y z v1 4 11 1 ¢4 €1 91 andang/andug
62 6% o€ oY Yy (e ¥4 1S 918017
L 8 S €1 rd 01 €1 4 Teuor3eindwo)
1adeaq 8uyaog ne1 uoayifey % € rA SMVd £108338) 10139
JAVd
M4l

uosTtaedwo) I03 ussoyp) So9TIohIjze) I0IIT JO JUIDISBG

¢l @19®L

bt s b e e 4l

—— - ——

Table 13

IR i el

fmveem e

Correlations among Error Profiles by Project

' PAVE TRW |
Project PAWS 2 3 4 Raytheon IBM Boeing Draper
PAVE PAWS (.68)
TRW 2 <47 (.67)
TRW 3 . 70% B4Rk (,72)
TRW 4 «8O** J78%% 87Rkk (,78)
Raytheon J73% .68*% .69% .74% (.73)
IBM .62% .83%% _ £9% o 75%% . 64% (.67)
Boeing L90%*% 49 .57 .73% .86%% .55 (.67)
Draper .55 .63% .65% L 82%% . 78%% .63% ,58% (.66)
Note: Correlations in parentheses on the diagonal represent the average
correlation for the project's error profile with that of other
projects.
*p < .05
w*p < .01

*akp < 001

43

TRW4 seemed to have the highest overall correlations with
other projects. It appears that the profile of errors on the
PAVE PAWS project is fairly typical of that experienced by
other projects.

2.2.4 Error trends over time. The frequencies of errors
in each category are presented by time period for CPCI2 in
Table 14. This was the only CPCI with a sufficient number of
errors to make trend comparisons meaningful. With the
exception of the initial 4 months and the final 6 months of
development on CPCI2, development time was divided into 3
month segments for the purpose of this analysis. Table 15
transforms each of these frequencies into the percentage of
errors within each time period contained within each
category. It is evident from these data that the percent of
logical errors steadily increased over time. The percents of
documentation and redesign errors decreased over time, with a
brief flurry of design errors identified at the end of the
project. Other categories such as I/O and configuration
errors, appear to account for large percentages during the
middle of the development period. It is clear from these
data that the profile of error categories (in terms of
relative frequencies) changes over time during software
development.

The most frequent error categories during the last 6
months generally correspond to the most frequent compile
listings reported during the same period (logic, redesign,
unimplemented function). It is surprising that more
computational errors were not reported given the frequency of
compiles listing this reason in Table 6. However, a direct
comparison is difficult given that Trouble Reports were
supposedly generated only for errors captured during
integration or higher levels of testing.

6161 8S1 Y6t €99 697 291 LST %9 49 1e3i0L

€C € S 8 L uof3eindyjuo)

8 1 1 [4 1 € dnias yoaq

6 4 L yound£ay

6% L 1 S €7 €1 a8ueyd uoyjzeEIUBWNIOQ

[4¢4 i It 1y 1€ o % €1 11 udysapay

09 1 £ A T € € 1 S papaau uogjezyuyidg

XA A S Vit U] 1 1 por3syies uwmmuwucw paT3J¥oadsup

[AS S | AR | 1 paaynbaa uoyrjouny payjroadsup

01 ST 8¢t 81T 91 6 € € ?20eJ193uyT pajuswaiduyup 0 |

917 11T €S 96 e (1 8 € 9 uoyIduUNj pajuswatduyupn i

1¢ S €1 € aseqeled M

L£2 o1 sz 8L oy SE Ty Y € 3uyrssad01d 0/1 _

6S8 S8 zer 80¢ 90T 0 1§ 91 LR 21801 i

%9 z ot 1€ i oz % 1 TeuoyIRINdwWO) M
%

WIOL TI~L 9-% €1 21-01 6-L 9-% €-1 Z1-6 £10333e€) 10123

8L61 LL6l 9461

1B3A Aq syjuoy

T10dD 103 poriaq adwyl Aq safi08aje) 1011y jo Aouanbaxy

71 914qeL

0 4 S \/ uoTaIean8yjuo)

1 0 1 1 [A dnjas yoaq

1 1 youndLay

I 0 £ 9¢ sz a8uryd> uolIEjUBWNDOQ

9t 8 9 [4 A ¢l 61 12 uSisapay

1 1 A 8 8 [/ [/ 01 papsau uor3IeZTWIIdD

1 1 A Z 1 Z P213STiES 80®JAIIUT patiroadsu|

€ € 7 0 pearnkai uwor3ouny par3jyoadsup

i 9 L 01 9 / 9 20B3J193UT pajuswatdwyup

L el 1 8 o1 < i 11 uot3douny pajuswaidurup

1 [4 ! aseqele(q

9 9 [A! S1 [4 XA 9 9 Buyssasooad /1

%e 66 97 6¢ 1t 2t <7 12 51307

1 € S S 1 € z 1euotieindwo)
21-L 9-% €-1 ¢I-01 6~L 9-% €-1 T1-6 £1089231€) 10113

8L61 LL6l T 9/61

1ed} Aq SY3IUOR

7IDdD 103 SpoTdad PWIl UTYITM S9TI08938) 10117 JO SI8BEIUIDIY]

S1 @19l

46

&

|

3. CONCLUSIONS AND RECOMMENDATIONS

3.1 Conclusions

The PAVE PAWS software development project appears to
have achieved average success on the outcomes studied in the
data presented here. That is, it achieved the level of
productivity and experienced the number of errors expected of
projects of similar size. Although these data do not
indicate increased productivity during software development
through the use of modern programming practices, they do
suggest that these practices contribute to the kind of
control and management visibility which is required to guide
software projects to successful completion on schedule and
within budget. In particular, management found the reporting
mechanism of the Program Support Library to be of tremendous
value as a management information tool. Similarly, chief
programmers believed that the chief programmer team structure
contributed heavily to the overall performance and
manageability of the PAVE PAWS project.

Unfortunately, the available data do not allow
assessments of the separate contributions of each programming
practice, or even of the cumulative effect versus the nonuse
of such practices. However, project personnel prepared a
description of how each practice was implemented on PAVE PAWS
and assessed the success of each technique. This
assessment appears in the Raytheon final report (1979) to
RADC. The conclusions reached in that report were reiterated
in our interviews with project personnel. Briefly, these
conclusions were:

® Top-down design - makes the entire system design much
more visible from early stages, contributes to
logical progression in testing, and contributes to
component independence.

® Structured coding - insures control flow will be much
easier to comprehend, debug, and maintain, and does
not appear to result in more code or poorly optimized
code as is often claimed.

® Indented listings - aids programmer understanding and
debugging.

e HIPO and PDL - HIPO charts seem to be valuable aids
in system and subsystem design but are cumbersome
when prepared for lower levels, while PDL has

47

R e e)

numerous advantages at lower levels of system
development. Constant updating may not prove cost-
effective in a cost/benefit analysis; it should only
be done periodically.

® Program support library - was an extremely valuable
tool for providing configuration control, unit and
integration testing, and management visibility.

® Chief programmer team - provided an organizing force
to the work of project personnel. Should be staffed
at a level of five or six people and the librarian
may be shared with other teams.

® Structured walkthroughs - were beneficial when
divided into two types. Design reviews were attended
Ly project and customer personnel while code reviews
were attended by rarely more than two others who
could study the code in detail.

® Management information system - while PSL reports
such as code progressions were of little assistance
to programmers, they proved invaluable as a progress
tracking tool for management.

From conclusions such as these it would appear that modern
programming practices are not so much miraculous
productivity aids as they are sound management practices.
Thus, their use will reduce the risk and margin of error in
predicting and controlling project outcomes.

3.2 Recommendations

3.2.1 Technical approach to life cycle research. As is
evident in this report, the types of data necessary to
evaluate the effectiveness of various programming techniques
are not easy to collect. Although software development
efforts generate an enormous assortment of numbers, research
is not a scavenger hunt through the available data. Rather,
data collection for research purposes should be designed from
a theoretical model of the phenomena to be studied. It is
important to identify the data to be collected from the
factors in the model. Currently there are a number of
critical areas in software development in need of theoretical
models and evaluative data such as:

® Project sizing and costing

® Reliability prediction

48

Ca

‘.""—"4—-'&“

-

p—

— it

® Personnel selection and performance
® Programmer team organization
e Software design and testing strategies

In order to evaluate important questions in software
engineering, a researcher must first determine the important
factors affecting the criteria of interest and how they are
related. For instance, Figure 12 presents a model of
programmer performance and identifies some of the data which
might be collected in order to evaluate various factors.
Similarly, Figure 13 presents a model of team performance and
some of the data which might be collected to evaluate this
model.

There are two primary research strategies which can be
employed in testing hypotheses from theoretical models
depending on the type of controls which can be exercised over
the variables affecting performance. 1In a laboratory
situation, experimental controls can be exercised by
manipulating the independent variable(s), holding all other
situational factors constant, and minimizing the effect of
individual differences among participants by randomly
assigning them to different conditions of the experiment.

The strongest causal statements can usually be made from such
rigorously controlled experiments. On the other hand,
research in field settings must usually rely on statistical
controls to study the effects of different variables.

Through the use of multivariate correlational methods such as
structural equation models or time series analysis,
underlying relationships can be teased from the data and
different causal models can be compared to determine which is
most consistent with the data. In using either experimental
or statistical controls, it is always important to identify
both the factors which may moderate the relationships
observed and the populations to which the results can be
generalized.

3.2.2 Development of a project database. In identifying
data relevant to each factor in a theoretical model, there
are a number of important considerations. First, the data
should be collected at the appropriate level of explanation.
The following are four possible levels of explanation:

® Programming environment
® Software development project

® Programming team

49

Pl AR, TN 7

—— -~
-

F g

TASK TEAM
e a——
REQUIREMENTS ENVIRONMENT
ABILITIES
EXPERIENCE JOB | OBJECTIVE
BEHAVIORS CRITERIA
MOTIVATION ¥
SUBJECTIVE
A CRITERIA
ABILITIES TASK REQUIREMENTS TEAM ENVIRONMENT

e Abstract reasoning
@ Verbal reasoning
e EDP knowledge

EXPERIENCE

e Training
e Job history

MOTIVATION

o Interests
e Job attitudes

e Programming practices
e Algorithm complexity
e Machine and language

JOB BEHAVIORS

e Task accounting
® Absenteeism

® Runs

e Work habits

Leadership style

Team organization
Coworkers skills
Organizational policies

OBJECTIVE CRITERIA

e Errors
e Time to completion
e Quality of code

SUBJECTIVE CRITERTIA

e Supervisor ratings
e Peer ratings

Figure 12. A model of individual programmer performance

. e ~Y)

PROGRAMMING PERFORMANCE OF
ENVIRONMENT OTHER TEAMS
TEAM OBJECTIVE L > PROJECT
TEAM FACTORS I ™1 BEHAVIORS TEAM CRITERIA OUTCOMES
TASK
REQUIREMENTS
OBJECTIVE
PROGRAMMING ENVIRONMENT PERFORMANCE OF OTHER TEAMS TEAM CRITERIA
e Organizational policies e Finished code e Errors
® Access-turnaround time e Documentation o Schedule
e Tool availability o Adherence to specs e Costs
e Quality

TEAM FACTORS

Leadership style
Programming practices
Skill mix

Job attitudes

Figure 13.

TEAM BEHAVIORS

e Runs
e Communication
e Integration

TASK REQUIREMENTS

e Algorithm complexity
e Language and machine
e Programming practices

PROJECT OUTCOMES

Budget

Schedule

Costs

Software quality
Software reliability

A model of team productivity

TREONES S

‘@ Individual programmers

Data collected at the project level are not sufficient by

themselves to explain processes occurring at the level of the

individual programmer. Thus, average lines of code per

personmonth at the project level is not an adequate

criteria for investigating the productivity of individual

programmers. Performance at the project level involves effort

spent integrating the work of programmers and programming h
teams above and beyond the work initially expended by }
programmers in developing their code. In analyzing data {
across levels of explanation it is important to specify rules ‘
for aggregation which identify how data at one level can be

combined to explain processes occuring at the next higher

level.

e e ey A A ———— e fr————— -

Performance itself is an ambiguously defined term.
Rather than attempting to identify an ultimate criterion,
a better approach would identify multiple criteria at
several different levels of explanation. Identification of
multiple criteria represents to software development managers
the tradeoffs they must frequently make between schedule,
budget, and quality (Figure 14). Regarding criteria relevant
to schedule and budget, one can collect machine records
(runs, errors, changes, cpu time, etc.), personnel and
payroll records (manpower loadings, labor costs, absenteeism,
etc.), and managerial performance ratings. In an RADC
sponsored project, McCall, Richards, and Walters (1977)
identified myriad attributes constituting software quality
such as reliability, maintainability, portability,
efficiency, etc.

The longitudinal collection of data and use of modeling
techniques will allow an assessment of critical phases in the
life of a development project and a programming team. A
critical phase is a development step which influences
important future outcomes. Management information regarding
the outcomes of critical periods may serve as early warning
flags concerning problems in specific areas. .
1k
Table 16 presents some of the domains of data which :
might be studied in a software research program. An
important distinction is made between data which are
objective versus those which are subjective. Objective data 4

represent direct measurements of phenomena under

consideration. Subjective data represent reports by project ,
participants on their backgrounds, attitudes, perceptions of 4
1 their work, etc., or in the case of managers, the performance ti

: of their subordinates. This objective-subjective distinction
b is especially important for interpreting criterion
relationships, where subjective criteria represent more of a

-
Lo

52

o

- Wt‘n“b"“‘

Sk oy ol

m H SONIQVOT VIOl -
b | HAMOANVH \L

dourwaogaad 3oefozd Jo Topow eTI93TID a1dr3TnK

AONAIOIddd - /I
ALITIGVNIVINIVW -~
ALI'TISVITIY -

SOILSI¥ALOVEVHD dd0D

HSINId Ol IWIL -~

SIL'1NS3¥ 1SAL -

3000 30 SANIT -
JONVIHOANAd

IIL -
SAONVHD -
séowys -

; SNNE -

‘ A9VSN INIHOVH

! sFAONENL -

RSIZIINASEV -
SINIRNOISSV -

T9A3T 10308y]

“PT 2anbrg

ALITVAD

T'INAIAHIS

1adang

T2AaT 3903loag

53

1130¥d ONV
SI24NOSTE 40
NOILVZIWILdO

12437 TvUOTIEZTUBRBIQ

Table 16

Domains of Data

Objective data Subjective data

Team Factors I. Individual Differences

A. Programming practices A, Biographical
B. Size and composition 1. personal history
C. Task accounting 2. work experience
D. Physical environment B. Intellectural
E. Communication patterns 1. abstract reasoning
2. numerical ability
C. Personality
1. states-traits
2. 1interests
3. motivation

Task Complexity II. Perceptions

A. Requirements A. Management practices
B. System size B. Work climate

C. Complexity of ‘code 1. task

D. Module difficulty 2. leader

3. work group
4. organization

Criteria Criteria

A. Machine records A. Satisfaction
1. runms B. Performance ratings
2. modifications
3. errors
4. CPU time
Schedule completion
Test results
Personnel records
1. absenteeism
2. turnover
Costs
1. computer time
2. manpower

. a5 2 N
Lt e s | A PR At

h

morale factor, and may themselves act as predictors of
objective criteria in a reciprocal causation model. The
primary domains of data to be collected are described in
general terms below. Specific variables should be selected
on the basis of a literature review.

There are a number of factors related to team
performance (Figure 13) such as its size or personnel
composition, the communication patterns established inside
and outside of the group, programming practices such as the
frequency and number of structured walkthroughs, and quality
of the physical environment such as the proximity of team
members. In addition, a task accounting system should be
implemented which keeps periodic records of the time spent by
team members on different aspects of their jobs. Post hoc
measures of the complexity of modules should also be captured
in the form of number of statements and complexity metrics
(Halstead, 1977; McCabe, 1976) since these relate to task
difficulty.

Three separate categories of individual differences
variables might be collected (Figure 12). The first category
involves biographical information describing personal -
history and work experience. The second category includes
various tests of cognitive ability such as abstract
reasoning and numerical ability which have been related to
programmer performance. The final category of individual
differences represents personality factors such as
achievement motivation and the desire for routine versus
complex work.

Variables which describe how actual conditions are
perceived and interpreted by programmers offer insight into
how these conditions affect individual and/or team
performance. Such data has been described as the
organizational or work climate. Data on how programmers
perceive their work environment can be collected periodically
on questionnaires. These data can be used to either describe
the effects of certain programming management practices on
team members, or to predict subsequent programmer or team
performance.

Data should also be collected on code quality and
complexity. Such metrics have been proposed by Halstead
(1977), McCabe (1976), and McCall, Richards, and Walters
(1977). These metrics can be assessed on the software at
different stages of its development and used to predict
outcomes at later stages (Figure 15). These metrics can also
be used as measures of task difficulty in models of
programmer or team performance.

T . L e] g P ¥ - - wr e
,~\
SOTA39W 9IeM3JOS JO 8Sn dBATIDTPaAd °GT axnbt 3
aavanItaa - 1210344 QI 1A1AOR

S110S9¥ — SANIVA

INILSAL 191aA4d IVOLOV 9
* 190431 g SANIVA
4 ON1a0D 131034d qaLVKILSA
AINVNAINTVR IN1LSAL IN1a0d N9IS3ad

! A A R o
b e R P o L A e } gl ik "
s Yo i LE witsiiha s - 03

Several criteria should be investigated at different
levels of analysis as described in Figure 14. The two major
classes of criteria to be collected are objective and
subjective performance measures. Some objective performance
measures can be collected on-line as each successive program
is submitted to the computer. Thus, for each routine under
development there will be a record for each run of the number
and type of modifications made and the number and type of
errors encountered. Over time a large database will emerge ,
which can be analyzed for programming effectiveness at the
level of either the individual programmer or the programming
team. Other data will also be available in direct or
derivable form regarding costs, completion schedules, test
results, and personnel records.

The subjective criteria to be collected involve
managerial performance evaluations of all programmers and of
each programming team. Performance evaluations could be
developed through critical incident techniques for both
programmers and teams. Table 17 presents the anticipated
frequency with which variables from different domains might
be collected.

The following considerations are critical if useful
evaluative data are to be obtained:

e Identify data relevant to each factor in a model
® Collect data at appropriate levels of explanation
® Identify multiple criteria

e Distinguish between objective and subjective data

e Distinguish between experimental and correlational
data

e Identify appropriate time lags for data collection

Data collection on programming projects often interferes
with the programming task or meets opposition from team
members. This problem can be counteracted by developing
measurement tools embedded in the system which are invisible
to programmers. Such tools would produce more reliable data
since they cannot be forgotten, ignored, or incorrectly
completed as forms frequently are. A program support library
can report module size, number of runs, and other summary
information at regular intervals, and check project status to |
alert the manager of milestones. When these collection
mechanisms are imposed unobtrusively on programming projects,
their use is more likely to gain support, and better data

""*’: T e—————

—

- TYE 5%

s v N N T

' ok 5 e ki S w
Table 17
Frequency of Data Collection
Variable Frequency of Collection

Team Factors

Task Complexity:
initial rating
post hoc measures

Machine Records
Schedule completion
Testing Results
Personnel Records
Costs

Individual Differences

monthly

during startup

as module completed
daily

as available

as available

weekly

monthly

during startup

Management Practices Survey bi-monthly

Work Climate
Satisfaction

Performance Ratings

every 6 months
every 6 months

every 6 months

58

b
Y

IR+ o

Wy inny

|
¢
i

will be available both for management and research.

As the data base increases, data should be periodically
edited to insure accuracy. At the same time the development
of composite scores. can begin where appropriate; for
instance, the development of a reduced set of composites from
the individual differences data. While such composites
should be established on conceptual grounds, multivariate
techniques such as factor analysis are available to aid the
process of data reduction. That is, only conceptually
distinct sets of data (e.g., biographical items or job
perceptions) should be entered into an empirical data
reduction technique. For data which have been collected
longitudinally, the reliability of scores to be used for
further analysis can be tested for stability as well as
internal consistency.

In summary the following guidelines for software life
cycle research are proposed:

® Begin with a theoretical model
® Identify an appropriate research strategy
® Appoint someone responsible for data collection

® Collect data which is
- appropriate to the level of explanation
- objective
- longitudinal

® Identify multiple criteria
e Hire a good statistician

The major contribution of such a research program would
be the wealth of information it would generate concerning the
management of large software development efforts,
particularly of the xind sponsored by DOD and other federal
agencies. Some of the specific outcomes from such projects
would be:

® Guidelines for developing and interpreting Management
Information Systems (MIS) for tracking progress in
large software development efforts.

® Guidelines for organizing and starting up programming
projects.

® Predicting software quality and reliability.

59

B Tt

Guidelines for selection and placement of
programmers.

Additional refinement of software life-cycle
for sizing and costing software development e

The data collected and analyzed on the PAVE PAWS
LSDB projects have provided initial examples of how si
research might be approached. The results have been

encouraging, and more comprehensive databases are nee
future progress.

4. REFERENCES

|
|
:
!

Baker, F.T. Chief programmer team management of productidn
programming. IBM Systems Journal 1972, 11, 56-73.

- e

] Baker, F.T., & Mills, H.D. Chief programmer teams.
- Datamation, 1973, 19 (12), 58-61.

Baker, W.F. Software data collection and analysis: A real-
time system project history (Tech. Rep. RADC-TR-77-192).
Griffiss AFB, NY: Rome Air Development Center, 1977.
(A041644)

Barry, B.S., & Naughton, J.J. Structured Programming Series
{Vol. 10) Chief Programmer Team Operations Description
{ RADC-TR-7400-300-Vol.X). Griffiss AFB, NY: Rome Air
Development Center, 1975 (NTIS No. AD-A008 861).

Belford, P.C., Donahoo, J.D., & Heard, W.J. An evaluation of
the effectiveness of software engineering techniques.
In Proceedings of COMPCON '77. New York: IEEE, 1977.

Black, R.K.E. Effects of modern programming practices on i
software development costs. 1In Proceedings of COMPCON
'77. New York: IEEE, 1977. E

Boehm, B.W. Software and its impact: A quantitative
assessment. Datamation, 1973, 19 (5), 48-59.

Brown, J.R. Modern programming practices in large scale
software development. In Proceedings of COMPCON '77.
New York: IEEE, 1977.

Curtis, B. & Milliman, P. A matched project evaluation of :
modern programming practices (2 vols.). Griffiss AFB. : E
NY: Rome Air Development Center, 1980. RADC-TR-80-6 <

DeRoze, B.C. Software rcsearch and development technology in
the Department of Defense. Paper presented at the AIIE
Conference on Software, Washington, D.C., December "
1977. -

DeRoze, B.C., & Nyman, T.H. The software life cycle - A
management and technological challenge in the Department
of Defense. IEEE Transactions on Software Engineering,
1978, 4, 309-318.

Dijkstra, E.W. Notes on structured programming. In O.J.
Dahl, E.W. Dijkstra, & C.A.R. Hoare (Eds.), Structured ;
Programming. New York; Academic Press, 19727 '\ 4

61

Duvall, L.M. The design of a software analysis center. In
Proceedings of COMPSAC '77. New York: IEEE, 1977.

Fries, M.J. Software error data acquisition. (Tech. Rep.
RADC-TR-77-130). Griffiss AFB, NY: Rome Air
Development Center, 1977. (A039916)

Halstead, M.H. Elements of Software Science. New York:
Elsevier North-Holland, 1977.

Jones, T.C. Measuring programming quality and productivity.
IBM Systems Journal, 1978, 17 (1), 39-63.

Katzen, H. Systems Design and Documentation: An
Introduction to the HIPO Method. New York: Van
Nostrand Reinhold, 1976.

Lyons, E.A., & Hall, R.R. ASTROS: Advanced Systematic
Techniques for Reliable Operational Software.
Vandenburg AFB, CA: Space and Missile Test Center, 1976.

McCabe, T.J. A complexity measure. IEEE Transactions on
Software Engineering, 1976, 2, 308-320.

McCall, J.A., Richards, P.K., & Walters, G.F. Factors in
software quality (Tech. Rep. 77Cl1S02). Sunnyvale, CA:
General Electric, Command and Information Systems, 1977.

Mills, H.D. Mathematical foundations for structured
programming. In V.R. Basili and T. Baker (Eds.),
Structured Programming. New York: IEEE, 1975.

Myers, G.J. Composite/Structured Design. New York: Van
Nostrand Reinhold, 1978.

Myers, W. The need for software engineering. Computer,
1978, 11 (2), 12-26.

Nelson, R. Software data collection and analysis. NY: Rome
Air Development Center, 1978.

Parnas, D. On the criteria for decomposing systems into
modules. Communications of the ACM. 1972, 15, 1053~
1058.

Putnam, L.H. A general empirical solution to the macro
software sizing and estimating problem. IEEE

Transactions on Software Engineering, 1978, 4, 345-
361.

e b e v e e

Raytheon. PAVE PAWS Modern Programming Data Collection
System: Final Report. Griffiss AFB; NY: Rome Air
Development Center, 1979.

Rye, P., Ostanek, W., Bamburger, F., Broden, N., & Goode, J.
Software systems development: A CSDL case history
(Tech. Rep. RADC-TR-77-213). Griffiss AFB, NY: Rome
Air Development Center, 1977. (A042186)

Salazar, J.A., & Hall, R.R. ASTROS Advanced Systematic
Techniques for Reliable Operational Software: Another
Look. Lompac, CA: Vandenburg, AFB, Space and Missile
Test Center, 1977.

Stay, J.F. HIPO and integrated program design. IBM Systems
Journal, 1976, 15, 143-154.

Stevens, W.P., Myers, G.J., & Constantine, L.L. Structured
design. IBM Systems Journal, 1974, 13, 115-139.

Tausworthe, R.C. Standardized Development of Computer
Software (2 vols.). Englewood Cliffs, NJ: Prentice-
Hall, 1979.

Thayer, T.A., et al. Software reliability study (RADC-TR-76-
238). Griffiss AFB, NY: Rome Air Development Center,
1976. (A030798)

Walston, C.E., & Felix, C.P. A method of programming
Imeasurement and estimation. IBM Systems Journal, 1977,
18 (1), 54-73.

Willman, H.E., Beaureguard, A.A., James, T.A., & Hilcoff, P.
Sortware systems reliability: A Raytheon project
history (Tech. Rep. RADC-TR-77-188). Griffiss AFB, NY:
Rome Air Development Center, 1977. (A040992)

Yourdon, E., & Constantine, L.L. Structured Design:
Fundamentals of a Discipline of Computer Program and
Systems Design. Englewood Cliffs, NJ: Prentice-Hall,
1979.

Yourdon Report (Vol. 1, No. 9). New York: Yourdon, Inc.
1976.

63

L st <M T RO

Ay e ®

ACKNOWLEDGEMENTS

We sincerely appreciate the help we received in
implementing this research from Don Roberts, our contract
monitor, and Nancy Hall, our liason at IBM. We also
appreciate the help of our colleagues Phil Milliman in data
analysis and Beverly Day for manuscript preparation. The
support and encouragement of Lou Oliver has also been
important in implementing this research.

64

T

D Rt i o
oAl .

Appendix A

Project Summary Forms

oy

SYSTEM PAVE PAWS (Data Coliected Against) DATE 10/07/77

GENERAL CONTRACT/PRCJECT SUMMARY

1. Type of Contract: FFP CPFF OTHER _FPIF

2. Total Cost (Actual or Estimated) $5.0M (CPCl's effort onlv)

3. Level of Subcontracting __ None

4. Project Environment

Dev. -Team Collocated with User? No

Dev. Team Collocated with Computer? Yes
Dev. System Same as Operational System? Yes
Test & Integration Separate Organization? Yes

5. DProject Description

Engineering support plus software design, fabrication, and test for

(1)

(2)

(3)

(4)

(5)

PAVE PAWS Tactical Software (CPCI 2) which is a real-
time system including input and output interfaces with the
PAVE PAWS Radar Controller (RCL-CPCI o) via the
PAVE PAWS Operating System (PPOS-CPCI 1). The sys-
tem has strict storage and throughput goals.

PAVE PAWS Simulation Software (CPCI 3) which is a real-
time system with the same interfacing requirements as
above,

PAVE PAWS Tactical Scenario Generator (CPCI 3) which
is a non-real-time data bace maintenance tool used t¢
prepare scenario files used to drive Siraulation.

PAVE PAWS Data Reduction (CPCI 5) which is a non-real-
time reduction system for a large variety of recording
which is done by both CPCI 2 and CPCI 3.

PAVE PAWS Program Support Library (PSL-CPCI ¢) which
provides the basic software library services in a topdown
structured environment.

6. Project Start Date ___04/12/7¢ Est. End Date 04/12/78
* 7. Estimated Number of Project Personnel
Management 5 Systems Engineering 6
Chief Programmer 6 Functional Test 10
Support 6 Dev. Programming 31

b e

PRNOuN

Estimated Number of CPC's __48

Estimated Number of Pages of Documentation

Requirements (Part I) _1460 Test Reports 1200
Specifications (Part II) _3400 User Manuals _ 900
Test Specifications 2000 Other 600

Estimated Total Number of Instructions _ N/A Cards 135K
Estimated Number of Different Input Formats N/A

Estimated Number of Different Output Formats N/A

Estimated Total Man/Months

Management 85 Programming _ 630
Support 102 Test 170
Engineering __ 102

Estimated Total Computer Time (HRS) 7000 Hours
(wall clock on dedicated computer)

Contact B. Scheff (Ravtheon)

T

SYSTEM __PAVE PAWS (Data Collected Against) DATE 10/07/77

MANAGEMENT METHODOLOGY SUMMARY

Management Procedures/Tocls Used

PAVE PAWS Program Support Library (PSL) reporting
PAVE PAWS Trouble Report Procedures
Program Control Management System (PCMS - Financial)

Documentation Available at CDR:

a. Development Specification (Part I).- CPCI 2
b. Development Specification (PartI) - CPCI 3
c. Development Specification (Part I) - CPCI 4
d. Development Specification (Part I) - CPCI §
e. Product Specification (Part II) - CPCI 2
f. Product Specification (Part II) - CPCI 3
g. Product Specification (Part II) - CPCI 4
h. Product Specification (Part II) -« CPCI 5

NOTE: All above documents provided to customer.

Formal Reviews and Schedule

Date
a. CPCI2 PDR 8/76 CDR 1/77
b. CPCI3 PDR 8/76 CDR 1/77
c. CPCl4 PDR 7/76 CDR 9/77
d. CPCl5 PDR 8/76 CDR 1/77

AF Regulations, Manuals, and Military Standards Under Which
Development Will Be Conducted.

MIL-STD-483
MIL-STD-490
MIL-STD-1521

R S it d gt e gl Y e A i e S ~TNs

5. Description of Deliverable Software

Refer to GENERAL CONTRACT/PROJECT SUMMARY, Item 5, for
¢ an overview of the technical content of deliverable software. All
" software will be delivered in a PSL form (either disk or checkpoint

tape).

6. Reference Measurement Gathering Procedures

Clarification required.

Contact B. Scheff (Raytheon)

70

SYSTEM PAVE PAWS (Data Collected Against) DATE

1
-0

z.

-

10.

i1,

10/07/77

DESIGN AND PROCESSOR SUMMARY

Target Computer(s) CDC CYBER 174-12

(same as development computer)
Processing Environment

1 Card Reader (CDC 405)

2 Line Printers (CDC 580-12)
3 Disk Drives (CDC 844-21)
6 CRT's (CDC 774-1)

1 Plotter (Gould)

6 Tape Drives (CDC 669-2)

Configuration: Hands on _ X Bateh __ X Remote

Operating System(s) Version Nos. 1.0 as modified (PPOS)

On-line _

Compiler Version(s) JOVIAL J3

Assembler(s) COMPASS

Est. Percent: JOVIAL _ 85 COMPASS 15

Automated Software Tools Used: PAVE PAWS PSL

Design Standards

- MIL-STD-483, Appendix VI
« IBM FSD Software Standards (33-09).

Programming Standards

« PAVZ PAWS Green Sheets
- PAVE PAWS Computer Development Plan

Programming Techniques Employed:

Topdown Design X HIPO
Chief Programmer __ X Structured Code
. Librarian X Structured Walk Thru

Topdown Test X Other - PDL

b

X
X

>

:
§
f

R Ly e R B R A B s e !

A002(d) |
R&D-111.RADC i
12, List Existing Programs/CPC's to be Used __ Standard commercial soitware ‘
13, Estimated Turnaround Time (HRS): Batch 2 Hours

. {

Contact B. Scheff (Raytheon)

- O T — —— —— — - T (,,
i - TP AN i&%‘.‘w?h IO T .. - A
27 AP BT RSy it Pl b bl o - ﬁ.l

MISSION \ 1
: \ of
P Rome Air Development Center |
? RADC plans and exccutes neseanch, development, test and 1

selected acquisition programs in Support of Command, Control

Communications and Intetligence (C31) activities. Technical

and engineerning dupport within areas of technical competence

48 provided to ESD Program 0fgices (POs} and other ESD

elements. The princdipal technical mission areasd are

communications, electhomagnetic guidance and control, sur- ;

veillance of ground and aerospace objects, intelligence data

collection and handling, information system technology,

{onospheric propagation, solid state sciences, microwave

physics and electronic reliability, maintainability and

compatibility. .
3

